DEEP LEARNING BASED COLORECTAL CANCER CLASSIFICATION

Authors

  • Khadakkar Poonam Ravindra Department of Electronics and Telecommunication Engineering, NES’S Ganagamai College Of Engineering, Nagaon
  • Dr. Rahul M. Patil Department of Electronics and Telecommunication Engineering, NES’S Ganagamai College Of Engineering, Nagaon
  • Chandrashekhar V. Patil Department of Electronics and Telecommunication Engineering, NES’S Ganagamai College Of Engineering, Nagaon

Keywords:

Colorectal cancer, deep learning, CNN, MobileNet, DenseNet, EfficientNet, LC25000.

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Conventional histopathological diagnosis, while effective, is labor-intensive, subjective, and prone to inter-observer variability. Recent advances in artificial intelligence, particularly deep learning, offer the potential to augment diagnostic workflows with automated, accurate, and interpretable image classification systems. This study develops and evaluates a deep learning-based framework for binary classification of CRC using histopathological images from the LC25000 dataset. Three convolutional neural network architectures—MobileNet, DenseNet, and EfficientNet—were implemented with transfer learning, data augmentation, and Grad-CAM interpretability tools. Among these, MobileNet demonstrated a balance of high accuracy (99.37%) and computational efficiency, highlighting its suitability for real-time clinical deployment. This work underscores the promise of lightweight deep learning models in supporting early CRC detection and provides a foundation for scalable AI-assisted pathology solutions.

Downloads

Download data is not yet available.

References

Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P., DeLand, L. A., & Mastorides, S. M. (2019). Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv preprint arXiv:1912.12142. https://arxiv.org/abs/1912.12142

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

American Cancer Society. (2023). Colorectal Cancer Survival Rates by Stage. Retrieved from https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html

Brenner, H., Kloor, M., & Pox, C. P. (2014). Colorectal cancer. The Lancet, 383(9927), 1490–1502. https://doi.org/10.1016/S0140-6736(13)61649-9

Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759–767. https://doi.org/10.1016/0092-8674(90)90186-I

Issa, I., & Noureddine, M. (2017). Colorectal cancer screening: An updated review of the available options. World Journal of Gastroenterology, 23(28), 5086–5096. https://doi.org/10.3748/wjg.v23.i28.5086

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Pacal, I., Karaboga, D., Basturk, A., Akay, B., & Nalbantoglu, U. A. (2020). A comprehensive re-view of deep learning in colon cancer. Computers in Biology and Medicine, 126, 104003. https://doi.org/10.1016/j.compbiomed.2020.104003

Tummala, S., Kadry, S., Nadeem, A., Rauf, H. T., & Gul, N. (2023). An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer. Diag-nostics, 13(9), 1594. https://doi.org/10.3390/diagnostics13091594

Hadiyoso, S., Aulia, S., & Irawati, I. D. (2023). Diagnosis of lung and colon cancer based on clini-cal pathology images using convolutional neural network and CLAHE framework. International Journal of Applied Science and Engineering, 20(1), 1–7. https://doi.org/10.6703/IJASE.202303_20(1).006

Al-Jabbar, M., Alshahrani, M., Senan, E. M., & Ahmed, I. A. (2023). Histopathological Analysis for Detecting Lung and Colon Cancer Malignancies Using Hybrid Systems with Fused Features. Bio-engineering, 10(3), 383. https://doi.org/10.3390/bioengineering10030383

Singh, O., & Singh, K. K. (2023). An approach to classify lung and colon cancer of histopathology images using deep feature extraction and an ensemble method. International Journal of Infor-mation Technology, 15(8), 4149–4160. https://doi.org/10.1007/s41870-023-01487-1

Provath, M. A. M., Deb, K., & Jo, K. H. (2023). Classification of Lung and Colon Cancer Using Deep Learning Method. Communications in Computer and Information Science, 1857, 56–70. https://doi.org/10.1007/978-981-99-4914-4_5

Tan, M., & Le, Q. (2021). EfficientNetV2: Smaller models and faster training. Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 10096–10106. https://arxiv.org/abs/2104.00298

Iandola, F. N., et al. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv preprint, arXiv:1602.07360.

Sakr, A. S., et al. (2022). An Efficient Deep Learning Approach for Colon Cancer Detection. Ap-plied Sciences, 12(17), 8450. https://doi.org/10.3390/app12178450

Downloads

Published

2025-07-18

How to Cite

[1]
Khadakkar Poonam Ravindra, Dr. Rahul M. Patil, and Chandrashekhar V. Patil, “DEEP LEARNING BASED COLORECTAL CANCER CLASSIFICATION ”, IEJRD - International Multidisciplinary Journal, vol. 10, no. 2, p. 9, Jul. 2025.